skip to main content


Search for: All records

Creators/Authors contains: "Stewart, Rebecca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Catchments with minimal disturbance usually have low dissolved inorganic nitrogen (DIN) export, but disturbances and anthropogenic inputs result in elevated DIN concentration and export and eutrophication of downstream ecosystems. We studied streams in the southern Appalachian Mountains, USA, an area dominated by hardwood deciduous forest but with areas of valley agriculture and increasing residential development. We collected weekly grab samples and storm samples from nine small catchments and three river sites. Most discharge occurred at baseflow, with baseflow indices ranging from 69% to 95%. We identified three seasonal patterns of baseflow DIN concentration. Streams in mostly forested catchments had low DIN with bimodal peaks, and summer peaks were greater than winter peaks. Streams with more agriculture and development also had bimodal peaks; however, winter peaks were the highest. In streams draining catchments with more residential development, DIN concentration had a single peak, greatest in winter and lowest in summer. Three methods for estimating DIN export produced consistent results. Annual DIN export ranged from less than 200 g ha−1 year−1for the less disturbed catchments to over 2,000 g ha−1 year−1in the catchments with the least forest area. Land cover was a strong predictor of DIN concentration but less significant for predicting DIN export. The two forested reference catchments appeared supply limited, the most residential catchment appeared transport limited, and export for the other catchments was significantly related to discharge. In all streams, baseflow DIN export exceeded stormflow export. Morphological and climatological variation among watersheds created complexities unexplainable by land cover. Nevertheless, regression models developed using land cover data from the small catchments reasonably predicted concentration and export for receiving rivers. Our results illustrate the complexity of mechanisms involved in DIN export in a region with a mosaic of climate, geology, topography, soils, vegetation, and past and present land use.

     
    more » « less
  2. Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield–related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society. 
    more » « less